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a b s t r a c t

Due to the significant advances in information technology mathematical modeling of drug delivery is a
field of steadily increasing academic and industrial importance with an enormous future potential. The
in silico optimization of novel drug delivery systems can be expected to significantly increase in accuracy
and easiness of application. Analogous to other scientific disciplines, computer simulations are likely to
become an integral part of future research and development in pharmaceutical technology. Mathematical
programs can be expected to be routinely used to help optimizing the design of novel dosage forms. Good
estimates for the required composition, geometry, dimensions and preparation procedure of various types
of delivery systems will be available, taking into account the desired administration route, drug dose and
release profile. Thus, the number of required experimental studies during product development can be
significantly reduced, saving time and reducing costs. In addition, the quantitative analysis of the physical,
chemical and potentially biological phenomena, which are involved in the control of drug release, offers
another fundamental advantage: The underlying drug release mechanisms can be elucidated, which is not
only of academic interest, but a pre-requisite for an efficient improvement of the safety of the pharmaco-
treatments and for effective trouble-shooting during production. This article gives an overview on the
current state of the art of mathematical modeling of drug delivery, including empirical/semi-empirical
and mechanistic realistic models. Analytical as well as numerical solutions are described and various
practical examples are given. One of the major challenges to be addressed in the future is the combination
of mechanistic theories describing drug release out of the delivery systems with mathematical models

quantifying the subsequent drug transport within the human body in a realistic way. Ideally, the effects
of the design parameters of the dosage form on the resulting drug concentration time profiles at the site
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of action and the pharmacodynamic effects will become predictable.
© 2008 Elsevier B.V. All rights reserved.
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. Introduction

Mathematical modeling of drug delivery and predictability of
rug release is a field of steadily increasing academic and industrial

mportance with an enormous future potential. Due to the signifi-
ant advances in information technology, the in silico optimization
f novel drug delivery systems can be expected to significantly
mprove in accuracy and easiness of application. Analogous to other
cientific disciplines (e.g., aviation and aerospace), computer sim-
lations are likely to become an integral part of future research
nd development in pharmaceutical technology. It is only a ques-
ion of time when mathematical programs will be routinely used to
elp optimizing the design of novel dosage forms. Considering the
esired type of administration, drug dose to be incorporated and
argeted drug release profile, mathematical predictions will allow
or good estimates of the required composition, geometry, dimen-
ions and preparation procedure of the respective dosage forms.
hus, one of the major driving forces for the use of mathematical
odeling in drug delivery is to save time and to reduce costs: The

umber of required experimental studies to develop a new and/or
ptimize an existing drug product can significantly be reduced.

In addition, the quantitative analysis of the physical, chemical
nd potentially biological phenomena, which are involved in the
ontrol of drug release, offers another fundamental advantage: The
nderlying drug release mechanisms can be elucidated. This knowl-
dge is not only of academic interest, but a pre-requisite for an
fficient improvement of the safety of new pharmaco-treatments.
his is particularly true for highly potent drugs with narrow ther-
peutic windows. Furthermore, potential challenges encountered
uring production (trouble-shooting) can be much more efficiently
ddressed if the system is not treated as a “black box”, but if there
s a thorough understanding of how drug released is controlled. It
s decisive to know which device properties are crucial to provide
he desired system performance.

Up to date, numerous mathematical theories have been
escribed in the literature (Siepmann and Peppas, 2001; Siepmann
nd Goepferich, 2001; Arifin et al., 2006; Lin and Metters, 2006),
ut most of them still lack in accuracy and/or easiness of appli-
ation. The “father” of mathematical modeling of drug delivery is
rofessor Takeru Higuchi. In 1961, he published his famous equation
llowing for a surprisingly simple description of drug release from
n ointment base exhibiting a considerable initial excess of non-
issolved drug within an inert matrix with film geometry (Higuchi,
961a,b). This was the beginning of the quantitative treatment of
rug release from pharmaceutical dosage forms. Numerous models
ave been proposed since then, including empirical/semi-empirical
s well as mechanistic realistic ones. In the first case, the mathemat-
cal treatment is (at least partially) purely descriptive and not based
n real physical, chemical and/or biological phenomena. Conse-
uently, no or very limited insight into the underlying drug release
echanisms can be gained. Furthermore, the predictive power of

mpirical/semi-empirical models is often low. This type of theories
ight for instance be useful if different types of drug release pro-

les are to be compared using a specific parameter (e.g., an apparent
elease rate constant for experimental design analysis). But great
aution must be paid if mechanistic conclusions are drawn or quan-
itative predictions made. An exception are approaches based on
rtificial neural networks (ANNs), which can show good predictive
ower.

In contrast, mechanistic mathematical theories are based on real

henomena, such as diffusion, dissolution, swelling, erosion, pre-
ipitation and/or degradation (Siepmann et al., 1998; Narasimhan,
001; Frenning and Stromme, 2003; Lemaire et al., 2003; Zhou and
u, 2003; Frenning et al., 2005; Raman et al., 2005). This type of
odels allows for the determination of system-specific parame-

(
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ers that can offer deeper insight into the underlying drug release
echanisms. For instance, the relative importance of several pro-

esses that are involved (e.g., drug diffusion and polymer swelling)
an be estimated. The dosage form is not treated as a “black box”,
ut as a real drug delivery system the mechanisms of which can be
nderstood. During product development such mechanistic real-

stic mathematical models allow for the quantitative prediction
f the effects of formulation and processing parameters (e.g., the
nitial tablet height and radius) on the resulting drug release kinet-
cs. Thus, the required composition, size, shape and preparation
rocedure of a novel dosage form with desired properties become
heoretically predictable. In addition, challenges encountered dur-
ng production are much easier to address when having a clear idea
f how the system works.

When using and/or developing mathematical theories to quan-
ify drug release from pharmaceutical dosage forms, the following
spects should carefully be taken into account:

(i) The accuracy of a mathematical theory generally increases
with increasing model complexity: The more phenomena are
taken into account, the more realistic the theory becomes.
However, caution must be paid because too complex models
are cumbersome to use. Too many system-specific parameters
are required to allow for quantitative predictions. Thus, when
developing a new mathematical theory for a particular drug
delivery system great care must be taken to consider only the
dominant physical, chemical and/or biological processes. If for
instance several mass transport steps take place sequentially
and if one of these processes is much slower than all others,
only this step needs to be considered in the model.

(ii) Theoretical calculations should always be compared to exper-
imental results. Importantly, there are two different types of
comparisons: The theory can either be fitted to experimental
data, or theoretical predictions can be compared with indepen-
dent experimental results. In the first case, one or more model
parameters are optimized in such a way that the differences
between the experimental results and the theoretical calcu-
lations are minimized. Especially if several model parameters
are simultaneously fitted to the same set of experimental data
great caution needs to be paid: The simultaneous adjustment
of many model parameters generally leads to good agree-
ment between theory and experiment, even if the theory is
not appropriate. Ideally, only one model parameter should be
fitted at a time, using a set of at least 12 experimental data
points. In the case of fittings to experimentally measured drug
release kinetics, it is furthermore important that the entire
drug release profile is described, and not only one part of
it (e.g., the early, intermediate or final phase). A much more
reliable comparison (and indication for the validity of a math-
ematical theory for a specific type of drug delivery system)
is that of theoretical predictions and independent experimen-
tal results. In this case, first all system-specific parameters are
determined via fittings to different sets of experimental results.
Once all required model parameters are known, the effects of
different formulation and/or processing parameters on the sys-
tems’ properties (e.g., drug release kinetics) are predicted in
silico. Then, the respective devices are prepared in reality and
the predicted systems’ properties experimentally measured.
If possible, not only one specific type of experimental results
should be determined, but different device properties should

be measured, such as the drug release kinetics, dry mass loss
behavior, changes in wet weight as well as drug and excipient
concentration profiles.

iii) There is no general mathematical theory that can be applied
to all types of drug delivery systems. Certain models are appli-
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cable to only a very limited number of drug delivery systems,
others have a much broader application spectrum.

(iv) Even if a model shows good agreement between theoretical
predictions and various types of independent experimental
results, one should always be cautious and ready to abandon
the theory if appropriate experimental evidence is given. A
model describing drug delivery is always a simplification of
the real system and its suitability is always restricted to certain
cases.

The aim of this article is to give an overview on the current
tate of the art of empirical/semi-empirical and mechanistic realis-
ic mathematical theories quantifying drug delivery and to provide
n outlook into the future of this field of research. Due to the sub-
tantially high number of variables, no effort was made to present a
niform picture of the different systems of notation defined by the
espective authors. The original nomenclatures are used and only
ome cases are modified by using more common abbreviations to
void misunderstandings.

. Drug release mechanisms

Depending on the type of drug(s), incorporated drug dose(s),
ypes and amounts of excipients, preparation technique, environ-

ental conditions during drug release as well as geometry and
imensions of the drug delivery system, one or more of the follow-

ng phenomena might be involved in the control of drug release
rom a dosage form, to mention just a few (Gallagher and Corrigan,
000; Grassi et al., 2003; Zhou et al., 2005; Berchane et al., 2007;
ertrand et al., 2007; Chirico et al., 2007; Abdekhodaie and Wu,
008):

Wetting of the system’s surface with water.
Water penetration into the device (e.g., via pores and/or through
continuous polymeric networks).
Phase transitions of (polymeric) excipients (e.g., glassy-to-
rubbery-phase transitions).
Drug and excipient dissolution.
Hindrance of rapid and complete drug and excipient dissolution
due to limited solubility and/or dissolution rates under the given
conditions.
Drug and/or excipient degradation.
Dissolution and/or precipitation of degradation products.
Creation of water-filled pores.
Pore closing due to polymer swelling.
Creation of significant hydrostatic pressure within the delivery
system, e.g. in the case of coated dosage forms.
Convection driven drug release due to significant hydrostatic
pressure created within the device.
Creation of cracks within release rate limiting membranes.
Creation of acidic or basic microenvironments within the dosage
forms due to degradation products.
Changes in the rate of drug and/or excipient degradation rate due
to changes in the microenvironmental pH.
Physical drug-excipient interactions (e.g., ion–ion attrac-
tion/repulsion and Van der Waals forces), which might
significantly vary with time and position due to changes in
the microenvironmental conditions, such as the pH, presence of
counter ions and ionic strength.

Changes in drug and/or excipient solubility due to altered
microenvironmental conditions (e.g., pH, ionic strength, etc.).
Diffusion of drugs and/or excipients out of the dosage form
with potentially time- and/or position-dependent diffusion coef-
ficients.

c
s
o
v
i
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Diffusion of drugs and/or excipients through the liquid unstirred
layer surrounding the device.
Penetration of acids, bases or salts from the surrounding bulk fluid
into the drug delivery system.
Hindrance in further drug and/or excipient release due to signif-
icant drug/excipient concentrations in the bulk fluid (non-sink
conditions).
Chemical reactions between drugs and excipients and/or water,
e.g. hydrolytic cleavage of ester bonds that covalently bind drugs
to polymeric matrix formers.
Changes in the device geometry and/or dimensions due to shear
forces.

It is virtually impossible to list all potentially involved phe-
omena (Brazel and Peppas, 2000; Charlier et al., 2000; Siegel,
000; Mollo and Corrigan, 2003; Grassi et al., 2004; Siepmann et
l., 2004, 2006a; Faisant et al., 2006). Furthermore, this list only
oncerns drug transport within the dosage form, not the subse-
uent drug fate in the living body. Different mathematical theories
ave been proposed to quantitatively describe drug transport in
he human organism (Saltzman and Radomsky, 1991; Krewson and
altzman, 1996; Harashima et al., 1999; Nicholson, 2001; Veng-
edersen, 2001; Clairambault, 2007; Geldof et al., 2008). However,
any of these theories are based on important simplifications,

.g. the extremely complex human body is represented by one or
wo well stirred liquid compartments. Often, various phenomena,
uch as enzymatic degradation, protein binding, active and passive
rug uptake into cells, intra-cellular drug transport, interactions
ith compounds in the extra- and intracellular space, convection,
rst pass metabolism, drainage into the lymphatic system, trans-
ort across the Blood Brain Barrier and other major obstacles (to
ive only a few examples) are not explicitly taken into account
Siepmann et al., 2006b). Please note that this article does not
ddress the in vivo aspect of drug delivery, but focuses on the
hysico-chemical processes within the dosage forms. In the future

t will be of major importance to combine comprehensive, mecha-
istic mathematical theories describing drug transport within the
osage form with comprehensive, mechanistic models quantifying
he subsequent drug fate in the human body.

. Mechanistic realistic theories

A mechanistic realistic mathematical model is based on equa-
ions that describe real phenomena, e.g. mass transport by
iffusion, dissolution of drug and/or excipient particles, and/or the
ransition of a polymer from the glassy to the rubbery state (Fick,
855; Noyes and Whitney, 1897; Frisch, 1980; Park, 1986; Lao et al.,
n press). These equations form the basis of the mathematical the-
ry. Often, partial differential equations are involved (Wang et al.,
968; Crank, 1975). To be able to solve them, the given initial and
oundary conditions must be known, for instance the drug distribu-
ion within the dosage form before exposure to the release medium,
he potential maintenance of perfect sink conditions throughout
he experiment or the potential movement of specific boundaries
such as the front that separates the dosage form from the bulk
uid). Depending on the complexity of the resulting set of math-
matical equations, either analytical or numerical solutions can be
erived. If the equations are relatively simple, exact mathemati-
al expressions can be found (analytical analysis) allowing for the

alculation of the resulting drug release rate as a function of the
ystem-specific parameters (e.g., initial dimensions). If the amount
f drug released or release rate can be separated from all other
ariables and parameters on one side of the equation, the solution
s called explicit and the effects of the considered formulation and
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rocessing parameters can be (more or less) directly be seen. In
ontrast, if it is not possible to separate the amount/rate of drug
elease from the other variables and parameters, only a so-called
mplicit solution can be derived, and the effects of the formulation
nd processing parameters is often less direct. Furthermore, if the
et of mathematical equations is complex (e.g., in the case of time-
nd position-dependent diffusion coefficients), no analytical solu-
ion can be derived, but approximations must be made (numerical
nalysis). The idea is to make certain simplifications, while limit-
ng the introduced error. For example, first derivatives might be
pproximated by finite differences with very small time or length
teps. It must be pointed out that due to the advances in informa-
ion technology numerical solutions are nowadays very accurate
nd often easy to use. In the following, both, analytical as well as
umerical solutions will be discussed.

.1. Theories based on Fick’s law of diffusion

If drug release is purely diffusion controlled with constant
iffusion coefficients, the mathematical treatment can be rather
traightforward. As illustrated in Fig. 1, different types of systems
an be distinguished, including: (i) reservoir devices consisting of
drug depot, which is surrounded by a release rate controlling bar-

ier membrane (often polymer-based), and (ii) monolithic systems,
lso called “one-block” systems, because there is no local separa-
ion between a drug reservoir and a release rate controlling barrier.
or both types of systems two subclasses can be distinguished: the

nitial drug concentration is either below or above drug solubil-
ty in the device. In the case of a reservoir device with an initial
rug concentration below drug solubility (e.g., a polymer-coated
ablet or pellet with a low drug loading), released drug molecules
re not replaced and the drug concentration at the inner mem-

w
s
d

ig. 1. Classification system for primarily diffusion controlled drug delivery systems. Stars
ggregates. Only spherical dosage forms are illustrated, but the classification system is ap
l of Pharmaceutics 364 (2008) 328–343 331

rane’s surface continuously decreases with time (=non-constant
ctivity source). If the membrane does not swell or dissolve, if per-
ect sink conditions are provided throughout the release period and
f the drug permeability through the barrier remains constant, first
rder release kinetics result, irrespective of the geometry of the
evice (Baker, 1987):

dMt

dt
= ADKct

l
= ADK

l

M0 − Mt

V
(1)

here Mt represents the absolute cumulative amount of drug
eleased at time t; ct denotes the concentration of the drug in the
elease medium at time t; M0 is the initial amount of drug within
he dosage form; V the volume of the drug reservoir, A the total
urface area of the device, and l the thickness of the membrane; K
epresents the partition coefficient of the drug between the mem-
rane and the reservoir, and D the diffusion coefficient of the drug
ithin the membrane.

In contrast, if the initial drug concentration exceeds the drug
olubility in a reservoir device, released molecules are replaced
y the (partial) dissolution of drug crystals/amorphous aggregates,
esulting in constant drug concentrations (saturated solutions) at
he inner membrane’s surface (constant activity source, Fig. 1). If
he properties of the release rate controlling barrier (including its
hickness and permeability for the drug) remain constant and if
erfect sink conditions are provided throughout the release period,
ero order release kinetics result as long as drug excess is provided,
rrespective of the geometry of the system (Baker, 1987):
dMt

dt
= AJlim

l
= ADKcs

l
(2)

here Mt is the amount of drug release at time t; dMt/dt denotes the
teady state release rate at time t; A is the total surface area of the
evice, Jlim the membrane-limiting flux, l the thickness of the mem-

represent individual drug molecules, black circles drug crystals and/or amorphous
plicable to any type of geometry.
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rane, D the diffusion coefficient of the drug within the membrane,
the partition coefficient of the drug between the membrane and

he reservoir, and cs the solubility of the drug in the reservoir.
However, in practice often deviations from these “ideal” systems

re observed, for instance the film coatings show crack formation
ue to significant hydrostatic pressure built up within the device or
ue to membrane swelling and/or (partial) dissolution (Borgquist
t al., 2002; Frenning et al., 2003; Marucci et al., 2008). This renders
he mathematical treatment much more complicated and yet there
s a significant lack of mechanistic realistic mathematical theories
aking these phenomena appropriately into account.

In the case of monolithic devices (Fig. 1), the system geometry
ignificantly affects the resulting drug release kinetics. If the initial
rug concentration is below drug solubility, the drug molecules
re individualized/dissolved within the carrier material (mono-
ithic solution). Otherwise, dissolved drug molecules co-exist with
morphous aggregates and/or drug crystals (monolithic disper-
ions). In the case of monolithic solutions and in the absence of
ignificant changes in the carrier matrix during drug release (e.g.,
onstant porosity, no swelling, time-independent permeability for
he drug) and if perfect sink conditions are maintained through-
ut the release period and if drug release is primarily controlled by
iffusion through the carrier matrix, the resulting release can be
alculated as follows, depending on the system’s geometry:

(i) In the case of thin films with negligible edge effects (Crank,
1975):

∞ ( )

Mt

M0
= 1 − 8

�2

∑
n=0

1

(2n + 1)2
exp

−D(2n + 1)2�2t

L2
(3)

where Mt and M∞ denote the absolute cumulative amounts of
drug released at time t and infinity, respectively; n is a dummy

ig. 2. Calculated changes in the drug concentration gradients within spherical, propr
llustration of the point of view; (b) concentration profile after 5 min; (c) 1 h; and (d) 8 h (
l of Pharmaceutics 364 (2008) 328–343

variable, D the diffusion coefficient of the drug within the
matrix former, L is the thickness of the film. To avoid the use of
infinite series of exponential functions, the following early and
late time approximations have been proposed for this equation
(Baker, 1987):

Mt

M0
= 4

√
Dt

�L2
for 0 ≤ Mt

M0
≤ 0.6 (4)

Mt

M0
= 1 − 8

�2
exp

(
−�2Dt

L2

)
for 0.4 ≤ Mt

M0
≤ 1.0 (5)

(ii) In the case of spherical dosage forms (Crank, 1975):

Mt

M0
= 1 − 6

�2

∞∑
n=1

1
n2

exp

(
−Dn2�2t

R2

)
(6)

where Mt and M∞ denote the absolute cumulative amounts
of drug released at time t and infinity, respectively; n is a
analysis, deeper insight into the changes in the systems’ com-
position during drug release could be gained. Fig. 2 shows for
instance the concentration profiles of propranolol HCl within
ammonio methacrylate copolymer-based microparticles after
5 min, 1 h and 8 h exposure to phosphate buffer pH 7.4.

anolol HCl-loaded microparticles upon exposure to phosphate buffer pH 7.4: (a)
reproduced with permission from Hombreiro-Pérez et al., 2003).
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Fig. 3. Theory and experiment: IFN-� release into phosphate buffer pH 7.4 from
t
i
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d

(
of the film.

(iv) The carrier material does not swell or dissolve.
(v) The diffusivity of the drug is constant (not dependent on time

or position).
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iii) In the case of cylinders (considering axial as well as radial mass
transport) (Vergnaud, 1993):

Mt

M∞
= 1 − 32

�2

∞∑
n=1

1

q2
n

exp

(
− q2

n

R2
Dt

)

×
∞∑

p=0

1

(2p + 1)2
exp

(
− (2p + 1)2�2

H2
Dt

)
(7)

where Mt and M∞ denote the absolute cumulative amounts
of drug released at time t and infinity, respectively; n and p
denote dummy variables; the qn are the roots of the Bessel
function of the first kind of zero order [J0(qn) = 0], and R and
H denote the radius and height of the cylinder. This equa-
tion can for instance be used to quantify drug release from
lipid implants (Guse et al., 2006; Herrmann et al., 2007a). As
an example, the release of the protein drug rh-interferon �-
2a (IFN-�) from tristearin-based cylinders can successfully be
described (Herrmann et al., 2007a). Interestingly, the addition
of poly(ethylene glycol) (PEG) (which is commonly used as
a pore former in inert matrices) results in protein precipita-
tion/very limited IFN-� solubility within the water-filled pores
of the implants and, thus, significant deviations from Eq. (7)
(Herrmann et al., 2007a,b). When considering also potentially
limited local drug solubility, time- and position-dependent
PEG concentrations and implant porosity, resulting in time-
and position-dependent drug diffusion coefficients, this more
comprehensive mathematical theory is able to quantitatively
describe the resulting protein release kinetics (Siepmann et
al., 2008). However, due to the complexity of the respective
set of partial differential equations, no analytical solution can
be derived for this theory, but numerical analysis can be used
for the implementation of the model. Importantly, this type of
mathematical theory is not only able to give deeper insight
into the underlying drug release mechanisms (e.g., relative
importance of drug diffusion, limited solubility and changes
in local porosity), but allows also for quantitative predictions
of the resulting drug release kinetics as a function of the device
design. Fig. 3 shows as an example the theoretically predicted
and experimentally verified release of IFN-� into phosphate
buffer pH 7.4 from tristearin-based implants containing 10%
IFN-�/hydroxypropyl-�-cyclodextrin (HP-�-CD) and 20% PEG.

For monolithic dispersions the mathematical description
ecomes even more complex. For the simplest geometry of thin
lms with negligible edge effects, Takeru Higuchi published the

amous square root of time relationship between the amount of
rug released from a thin ointment film with a large excess of
rug (initial drug concentration � drug solubility in the carrier
aterial) in 1961 (Higuchi, 1961a,b):

Mt

A
=

√
D(2c0 − cs)cst (8)

here Mt is the cumulative absolute amount of drug released at
ime t, A is the surface area of the film exposed to the release

edium, D is the drug diffusivity in the carrier material, and c0
nd cs represent the initial drug concentration and the solubility of
he drug in the carrier material, respectively. An important advan-
age of this equation is its simplicity. However, when applying it to

ontrolled drug delivery systems, the assumptions Higuchi based
his equation on must be fulfilled, including:

(i) The initial drug concentration in the system must be much
higher than drug solubility. This aspect is crucial, because it

F
H
t

ristearin-based implants: theoretical prediction (curve) and independent exper-
mental verification (symbols) in the case of implants initially containing 10%
FN-�/HP-�-CD and 20% PEG (experimental results: average ± S.D.; n = 3) (repro-
uced with permission from Siepmann et al., 2008).

provides the basis for the justification of the applied pseudo-
steady state approach. The concentration profile of a drug that
is homogeneously suspended within an ointment is illustrated
in Fig. 4. The solid line represents the concentration profile after
exposure of the ointment to perfect sink for a certain time t.
Importantly, a sharp discontinuity is observed at distance h
from the surface/release medium. For this distance h the con-
centration gradient is essentially constant, provided, the initial
drug concentration within the system, c0, is much greater than
the solubility of the drug (c0 � cs) (pseudo-steady-state). After
an additional time interval, �t, the new concentration profile
of the drug is indicated by the dotted line. Again, a sharp dis-
continuity and otherwise linear concentration profiles result.

(ii) The device geometry is that of a thin film with negligible edge
effects.

iii) The size of the drug particles is much smaller than the thickness
ig. 4. Pseudo-steady state approach applied for the derivation of the classical
iguchi equation. Theoretical concentration profile existing in an ointment con-

aining suspended drug and in contact with a perfect sink.
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vi) Perfect sink conditions are maintained throughout the experi-
ment.

Unfortunately, Eq. (8) is often misused and applied to controlled
rug delivery systems which do not fulfill all these assumptions. In
hese cases, any conclusion should be viewed with great caution.
ven if the cumulative amount of drug that is released from a partic-
lar drug delivery system is proportional to the square root of time,
his does not necessarily mean that the underlying drug release

echanism is the same as in the ointment Higuchi studied. For
nstance, the superposition of various other physicochemical phe-
omena (such as polymer swelling, time- and position-dependent
hanges in the diffusion coefficients of water and drug) might
esult in an apparent square root of time kinetics. Furthermore, as
iscussed above, the cumulative amount of drug released is propor-
ional to the square root of time in the early time approximation for

onolithic solutions with film geometry (Eq. (4)).
For monolithic dispersions with other geometries than that of

thin film with negligible edge effects, the reader is referred to
he literature (Higuchi, 1963; Desai et al., 1965, 1966; Lapidus and
ordi, 1966, 1968; Fan and Singh, 1989). If both, diffusion through
he inner device matrix as well as diffusion through a surround-
ng barrier membrane are of importance for drug release (Fig. 1,
miscellaneous” systems), the mathematical modeling is also more
omplex and geometry dependent. Again, the reader is referred to
he literature for more details (Fan and Singh, 1989).

.2. Theories considering polymer swelling

If polymer swelling is of importance for the control of drug
elease, e.g. as in the case of hydroxypropyl methylcellulose
HPMC)-based matrix tablets, the transition of the macromolecules
rom the glassy (less mobile) to the rubbery (more mobile) state
as to be considered in the model (Doelker, 1986; Colombo, 1993;
iepmann and Peppas, 2001). The two most important conse-

uences of significant polymer swelling in a controlled release
atrix system are:

(i) The length of the diffusion pathways increases, resulting in
decreasing drug concentration gradients (being the driving

p
d
T
s
a

ig. 5. Schematic presentation of a swelling controlled drug delivery system containing
ollowing moving boundaries: (i) an “erosion front”, separating the bulk fluid from the
issolved drug only and the swollen matrix containing dissolved and dispersed drug; and
l of Pharmaceutics 364 (2008) 328–343

forces for diffusion) and, thus, potentially decreasing drug
release rates.

ii) The mobility of the macromolecules significantly increases,
resulting in increased drug mobility and, thus, potentially
increasing drug release rates. In dry tablets, diffusion is often
negligible (diffusivities close to zero). In contrast, in a fully
swollen polymer matrix the diffusion coefficient of the drug can
be of the same order of magnitude as in an aqueous solution.

Depending on the type of polymer and type of drug delivery
ystem, one of these effects potentially dominates, resulting in
ecreasing or increasing drug release rates.

Fig. 5 schematically illustrates the physical phenomena which
an be involved in the control of drug release from a swellable
elivery system. This might represent a cross-section through half
f a matrix tablet which is exposed to an aqueous bulk fluid in
adial direction. On the right hand side, the inner tablet core is still
ry and in the glassy state (non-swollen), on the left hand side
he bulk fluid is located. Upon contact with the release medium,
ater diffuses into the system. With increasing water content, the
obility of the polymer chains (and, thus, also drug molecules)

ncreases. As soon as a certain, polymer-specific water concentra-
ion is reached, the macromolecular mobility steeply increases. This
henomenon is called “polymer chain relaxation” or “glassy-to-
ubbery-phase-transition”. The front at which this process takes
lace is called “swelling front”, which separates the swollen from
on-swollen matrix. Importantly, this is not a stationary boundary,
ut a moving one. If the initial drug concentration in the delivery
ystem exceeds drug solubility, dissolved and non-dissolved drug
o-exist within the matrix. Due to concentration gradients and the
ignificantly increased mobility, dissolved drug molecules diffuse
ut of the swollen matrix into the release medium. As long as a
on-dissolved excess of drug exists, the concentration of dissolved
rug in this part of the system is constant (drug molecules that
re released are replaced by the dissolution of non-dissolved drug,

roviding a saturated solution). But as soon as all excess drug is
issolved, the concentration within the swollen matrix decreases.
he front that separates the swollen matrix containing only dis-
olved drug from the swollen matrix that contains both, dissolved
nd non-dissolved drug, is called “diffusion front” (Fig. 5) (Colombo

dissolved and dispersed drug (stars and black circles, respectively), exhibiting the
delivery system; (ii) a “diffusion front”, separating the swollen matrix containing
(iii) a “swelling front”, separating the swollen and non-swollen matrix.
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t al., 1999, 2000). Importantly, also this front is moving. Further-
ore, a third front can be distinguished, which separates the drug

elivery system from the release medium and which is also mov-
ng. In the case of water-soluble matrix formers, this front is called
erosion front”.

If the polymer relaxation process is rate-limiting (e.g., all other
henomena, such as diffusion and dissolution are much faster) and

f the device has the geometry of a thin film (with negligible edge
ffects) and an initial homogeneous drug and polymer distribution,
ero order drug release kinetics result, because the rate at which
he swelling front moves is independent of its position (and, thus,
onstant). However, in the case of the geometry of a sphere or a
ylinder, the movement of a swelling front at a constant rate does
ot result in zero order release kinetics, but in a proportionality of
he cumulative amount of drug released to the time to the power
f 0.85 and 0.89, respectively (due to the change in the surface area
hat is affected by the swelling with time) (Peppas and Sahlin, 1989).

A very interesting, mechanistic realistic mathematical theory
llowing for the quantification of drug release from swellable poly-
er films has been proposed by Korsmeyer et al. (1986a,b). It allows

or a simultaneous consideration of the diffusion of water into the
evice and drug out of the system as well as of polymer swelling. To
ccount for the increase in water and drug mobility with increas-
ng water content of the polymer matrix, a Fujita-type exponential
elationship was chosen (Fujita, 1961) and shown to be appropriate
or the prediction of different types of transport behaviors. Dimen-
ional changes in the films are accounted for by allowing each
patial increment to expand according to the amount of water that
iffused in. At early time points, the swelling is restricted to one
imension by the glassy core of the sample. At later time points,
hen enough water has penetrated into the core of the system to
lasticize it, the sample relaxes to an isotropically swollen state.
fterwards, swelling is three-dimensional. Under these conditions,
ater (subscript 1) diffusion can be described as follows:

∂c1

∂�
= ∂

∂�

(
D1

∂c1

∂�

)
(9)

here D1 is the diffusion coefficient of water, and c1 is the normal-
zed water concentration:

1 = cw

cw,e
(10)

ere, cw is the water concentration in the film at a particular
osition, and cw,e is the equilibrium water concentration in the sys-
em. Time t is scaled according to the water diffusivity in the fully
wollen system, D1,s, and the dry thickness of the film, L0:

= tD1,s

L2
0

(11)

he spatial coordinate x is normalized with respect to the dry thick-
ess of the thin film:

= x

L0
(12)

o describe drug diffusion (subscript 2), the following equations are
sed:

∂c2

∂�
= ∂

∂�

(
D2

∂c2

∂�

)
(13)
2 = cs

cs,i
(14)

ere, D2 is the diffusion coefficient of the drug, and c2 is the nor-
alized drug concentration; cs denotes the drug concentration in

f
p
w
w
o

ig. 6. Fit of the Korsmeyer–Peppas model to experimentally determined theo-
hylline release kinetics from hydroxyethyl methacrylate-co-N-vinyl-2-pyrrolidone
opolymers-based films (curve = theory, symbols = experiment) (reproduced with
ermission from Korsmeyer et al., 1986b).

he film, and cs,i the initial drug concentration in the system. The
ollowing boundary conditions are considered:

1(0, �) = c1(�, �) = 1 (15)

2(0, �) = c2(�, �) = 0 (16)

here 0 and � are the two surfaces of the thin film. Please note that
describes the continuously moving outside surface of the film. The

ollowing initial conditions are considered:

1(�, 0) = 0 (17)

2(�, 0) = 1 (18)

ue to the complexity of this set of partial differential equations,
he latter was solved numerically. As it can be seen in Fig. 6, good
greement between theory and experiment was obtained when
tting this model to sets of experimentally measure theophylline
elease kinetics from (hydroxyethyl methacrylate-co-N-vinyl-2-
yrrolidone) copolymers-based films.

.3. Theories considering polymer swelling and polymer and drug
issolution

In practice, often even more processes are simultaneously
nvolved in the control of drug release from oral controlled release

atrix tablets: Generally, the matrix former is water-soluble. Thus,
lso polymer dissolution must be taken into account. Different
omprehensive mathematical theories have been proposed aim-
ng to describe this type of drug delivery systems (Ju et al., 1995a,b,
997; Siepmann and Peppas, 2001). In the following only one exam-
le will briefly be described. The reader is referred to the literature
or more details (Siepmann and Peppas, 2001).

The so-called “sequential layer model” takes into account the
iffusion of water and drug with time- and position-dependent dif-

usivities, moving boundary conditions, the swelling of the system,
olymer and drug dissolution, and radial and axial mass transfer
ithin cylindrical tablets (Siepmann and Peppas, 2000). The model
as successfully fitted to drug release kinetics from matrices based
n hydroxypropyl methylcellulose (HPMC) and HPMC derivatives,
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Fig. 7. Mathematical modeling of drug release from HPMC-based matrix tablets: (a)
scheme of a cylindrical tablet for mathematical analysis, with (b) symmetry planes
i
r

e
(
w
p
d
c
c
i
l
a
t

H
t
t
t
t
(
s

a

D

w
c
s
m
1
a
w
g
c
a
t
P
(
t
t
c
v
t

M

H
t
t
t
b
t
c
N
t
c
c
i
p
q
i
c
a
c
t
a
t
e
r
r
c
o

3

u
i
t
i
t
a
or even parts of the polymer bulk. Thus, the degradation of
n axial and radial direction for the water and drug concentration profiles (Rt and Zt

epresent the time dependent radius and half-height of the cylinder, respectively).

.g. hydroxypropyl methylcellulose acetate succinate (HPMCAS)
Streubel et al., 2000). The theory is applicable to freely and poorly
ater-soluble drugs and a wide range of initial drug loadings. Its
ractical usefulness could be demonstrated via quantitative pre-
ictions of the effects of the design parameters of HPMC-based
ontrolled release matrix tablets (including the size, shape and
omposition of the systems) on the resulting drug release kinet-
cs. Water and drug diffusion are considered based on Fick’s second
aw of diffusion for cylindrical geometry, taking into account axial
nd radial mass transport and concentration-dependent diffusivi-
ies (Crank, 1975):

∂ck

∂t
= 1

r

{
∂

∂r

(
rDk

∂ck

∂r

)
+ ∂

∂�

(
Dk

r

∂ck

∂�

)
+ ∂

∂z

(
rDk

∂ck

∂z

)}
(19)

ere, ck and Dk are the concentration and diffusion coefficient of
he diffusing species (k = 1 for water, k = 2 for the drug), respec-
ively; r denotes the radial coordinate, z is the axial coordinate, � is

he angular coordinate (Fig. 7a), and t represents time. Analogous
o the Korsmeyer–Peppas model described above, a Fujita-type
Fujita, 1961) exponential dependence of the water and drug diffu-
ion coefficients on the water content of the system is taken into

w
i
a
c
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ccount:

k = Dkcrit exp
{

−ˇk

(
1 − c1

c1crit

)}
(20)

here ˇ1 and ˇ2 are dimensionless constants characterizing this
oncentration-dependence. Also D1crit and D2crit denote the diffu-
ion coefficients of water and drug at the interface tablet/release
edium, where polymer chain disentanglement occurs (Ju et al.,

995b; Narasimhan and Peppas, 1996a,b, 1997). Ideal mixing is
ssumed (no volume contraction upon mixing drug, polymer and
ater), and the total volume of the system at any time point is

iven by the sum of the volumes of the single components. The
alculation of the new tablet dimensions is based on a mass bal-
nce considering drug, polymer and water. Polymer dissolution is
aken into account using the reptation theory (Narasimhan and
eppas, 1996a,b, 1997): Above a certain critical water concentration
c1crit), the polymer chains at the surface of the tablet start to disen-
angle and diffuse through the liquid, unstirred layer surrounding
he device into the bulk fluid (release medium). A dissolution rate
onstant, kdiss, is considered characterizing the polymer mass loss
elocity, which is normalized to the actual surface area of the sys-
em:

pt = Mp0 − kdissAtt (21)

ere, Mpt and Mp0 are the dry polymer matrix mass at time t, and
= 0, respectively; At denotes the surface area of the device at time
. The initial conditions reflect the fact that the matrix is dry and
he drug uniformly distributed throughout the device at t = 0. The
oundary conditions are defined as follows: The water concen-
ration at the surface of the matrix, c1crit, is calculated from the
ritical polymer disentanglement concentration (Ju et al., 1995b;
arasimhan and Peppas, 1996a,b, 1997). The drug concentration at

he surface of the tablet is assumed to be equal to zero (perfect sink
ondition). In order to reduce computation time, the origin of the
oordinate system is placed at the center of the cylinder, result-
ng in two symmetry planes for the drug and water concentration
rofiles (Fig. 7b). Thus, only the concentration profiles within a
uarter of the tablet need to be calculated. Due to the complex-
ty of the resulting set of partial differential equations, also in this
ase a numerical solution is required. Fig. 8 shows an example for
practical application of this mathematical model: The theoreti-

ally predicted effects of the initial radius of HPMC-based matrix
ablets (with an initial height of 2.6 mm, composition: 50% drug
nd 50% HPMC) on the resulting relative and absolute release of
heophylline into phosphate buffer pH 7.4 is illustrated (Siepmann
t al., 2002a). The curves show the theoretically predicted drug
elease profiles. Then, in a second step, the respective drug release
ates were determined experimentally (symbols in Fig. 8). As it
an be seen, good agreement between theory and experiment was
btained in all cases.

.4. Theories considering polymer erosion/degradation

Unfortunately, the terms “erosion” and “degradation” are not
niformly used in the literature. In this article, the following def-

nitions are applied (Goepferich, 1996a): Polymer degradation is
he chain scission process by which polymer chains are cleaved
nto oligomers and monomers. In contrast, erosion is defined as
he process of material loss from the polymer bulk. Such materi-
ls may be monomers, oligomers, parts of the polymer backbone
ater-insoluble polymers is part of their erosion process. Depend-
ng on the relative rates of water penetration into such systems
nd of polymer chain cleavage, two extreme types of erosion
an be distinguished: surface (or heterogeneous) erosion and bulk
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Fig. 8. Practical application of the “sequential layer model”: Theoretically predicted
effects of the initial tablet radius on the release patterns of theophylline from HPMC-
based matrix tablets in phosphate buffer pH 7.4 and experimental verification: (a)
relative amount of drug released and (b) absolute amount of drug released versus
t ◦
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Fig. 9. Modeling drug release from surface eroding monolithic dispersions with film
geometry: (a) scheme of the drug concentration profile within the system according
to Lee (1980). Two moving fronts are considered: a diffusion front and an erosion
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ime (37 C, initial tablet height = 2.6 mm, initial tablet radius indicated in the figures,
0% (w/w) initial drug loading) (curves: predicted values, symbols: independent
xperimental data) (reproduced with permission from Siepmann et al., 2002a).

or homogeneous erosion) (Langer and Peppas, 1983). In the first
ase, the polymer chain cleavage is much faster than the water
enetration into the system. Consequently, the degradation pro-
ess is mostly restricted to the outermost polymer layers and
he erosion predominantly affects the surface, and not the inner
arts of the device. In contrast, if water penetration is much
ore rapid than polymer chain cleavage, the entire system is

apidly wetted and degradation occurs throughout the device
bulk erosion). Generally, drug delivery systems which are based
n polymers with highly reactive bonds (e.g., polyanhydrides) in
heir backbone structure undergo surface erosion, whereas devices
hat are based on polymers with less reactive functional groups
e.g., poly(lactic-co-glycolic acid) (PLGA)] tend to be bulk eroding.

owever, please note that the dimensions of the drug delivery

ystem affect the relative water penetration rate into the device
nd that for instance a PLGA-based sphere of the size of the
oon would show surface erosion (Burkersroda and Goepferich,

999).

h

H
r
t

ront. (b) Calculated drug release profiles as a function of the “initial drug load-
ng:drug solubility” ratio (A/Cs). The parameter Ba/D serves as a measure for the
elative contribution of erosion and diffusion (adapted with permission from Lee,
980).

An interesting mathematical theory for surface eroding drug
elivery systems with film geometry was proposed by Lee in 1980
Lee, 1980). It is an analytical solution that is valid for different
drug loading:drug solubility” ratios. As illustrated in Fig. 9a, the
ovements of two fronts are considered: a diffusion front, and an

rosion front. Here, R denotes the time-dependent position of the
iffusion front, and S the time-dependent position of the erosion
ront; A is the initial drug concentration within the delivery system,
hich is above drug solubility, Cs (monolithic dispersion); Cb rep-

esents the drug concentration in the well stirred release medium,
nd x the position (with x = 0 at the center, and x = a at the sur-
ace of the film). It is assumed that the erosion front moves at a
onstant velocity, that edge effects are negligible and that perfect
ink conditions are maintained throughout the experiment. Under
hese conditions, Lee derived the following equations allowing for
quantitative description of drug release:

Mt

M∞
= ı + Ba

D
� − ı

Cs

A

(
1
2

+ a3

6

)
(22)

3 = A

Cs
+ ıh −

√(
A

Cs
+ ıh

)2

− 1 − 2ıh (23)

( )

=

2 D
1 −

Cs
(24)

ere, Mt and Minfinity are the cumulative absolute amounts of drug
eleased at time t and at infinite time, respectively; ı denotes
he relative separation between the diffusion and erosion fronts
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ı = (S − R)/a]; B is the surface erosion rate constant with the dimen-
ions of a velocity; a represents the half-thickness of the film, D the
rug diffusivity within the system, and � is the dimensionless time
� = Dt/a2). The parameter Ba/D is a measure for the relative con-
ribution of erosion and diffusion to drug release. The calculated
ffects of the “initial drug loading:drug solubility” ratio (A/Cs) on
he resulting drug release patterns are illustrated in Fig. 9b. In this
xample, the relative contributions of erosion and diffusion (repre-
ented by the term Ba/D) are kept constant (=1). As it can be seen,
he relative drug release rate decreases with increasing A/Cs ratio.
he model predicts that the release approaches zero order kinet-
cs when the initial drug loading becomes much higher than drug
olubility in the matrix.

As polymer chain cleavage is a random process, Monte Carlo sim-
lations can effectively be used to simulate polymer degradation.
ygourakis (1989, 1990; Zygourakis and Markenscoff, 1996) was
he first to propose this type of theories allowing for a quantitative
escription of drug release from surface eroding polymer matri-
es. The basic idea is to represent polymer matrix cross-sections by
wo-dimensional grids. Each pixel represents one of the system’s
omponents: drug, polymer, and potentially filler and pores. To sim-
late drug or polymer “dissolution” a so-called “life expectancy” is
efined for each type of pixel. As soon as a pixel comes into con-
act with water, its “lifetime” starts to decrease. Once the “lifetime”
xpires, the pixel is assumed to “dissolve” instantaneously. Impor-
antly, different “life expectancies” can be defined for the involved
ystem compounds, taking into account differences in their disso-
ution rates. However, diffusional mass transport is not taken into
ccount.

The first to combine Monte Carlo simulation to account for
olymer degradation and diffusional mass transport (based on
ick’s second law) was Achim Goepferich (Goepferich and Langer,
995a,b; Goepferich et al., 1995; Goepferich, 1996a,b,c, 1997a,b).
e developed theories that are applicable to surface eroding sys-

ems, but also models for bulk eroding devices. Furthermore, drug
elivery systems containing both, surface and bulk eroding poly-
ers can be considered, containing for instance poly(d,l-lactic

cid) (PLA) and poly[1,3-bis(p-carboxyphenoxy)propane-sebacic
cid] [p(CPP-SA)] (Goepferich, 1997a,b). In addition, the potential
rystallization of polymer degradation products, and microenvi-
onmental pH effects can be taken into account (Goepferich and
anger, 1995a). Later on, a similar approach (combining Monte
arlo simulations with diffusional mass transport) was used to
uantify drug release from spherical poly(lactic-co-glycolic acid)
PLGA)-based microparticles (Faisant et al., 2003; Siepmann et al.,
002b). For the mathematical analysis the latter are divided into
oncentric rings of equal volume (Fig. 10, the rings are described
pon rotation of the pixels shown in Fig. 10b around the z-axis).
ue to the symmetry planes at the r = 0 and z = 0 planes (in the
ase of homogenous initial drug and polymer distribution), it is
ufficient to calculate the mass transport phenomena in only one
uarter of the two-dimensional circle shown in Fig. 10b (Fig. 11a).
t t = 0 each ring represents either drug or non-degraded polymer.
ue to the identical volume of the polymer rings it is reasonable to
ssume that each of them contains a similar number of cleavable
ster bonds. Thus, the probability with which a ring representing
on-degraded polymer degrades upon its first contact with water

s similar for all rings. As described above, life time expectancies
re assigned to all polymer pixels (rings), reflecting the degradation
ate of the macromolecules. Importantly, knowing the status of each

ixel (ring) (“non-eroded polymer” or “pore”) at each time point,
he microparticle porosities in radial and axial direction (depending
n time and position) can be calculated (Fig. 11b). Based on these
orosity values, the position- and direction-dependent drug diffu-
ivities within the spheres can be calculated as a function of the

i
O
t
a
a

athematical analysis: (a) three-dimensional geometry; (b) two-dimensional cross-
ection with two-dimensional pixel grid. Upon rotation of the latter around the
-axis, rings of identical volume are described (reproduced with permission from
iepmann et al., 2002b).

xposure time to the release medium. This information is essen-
ial for the accurate calculation of the diffusional mass transport
rocesses using Fick’s second law (Crank, 1975):
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∂t
= 1
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)
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(
rD

∂c
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)}
(25)

ere, c and D are the concentration and diffusion coefficient of the
rug; r denotes the radial coordinate, z the axial coordinate, and
the angle perpendicular to the r–z-plane. In addition, the lim-
ted solubility of the drug within the system is taken into account:
nly drug which is soluble under the given conditions is considered

o be available for diffusion. Taking into account the given initial
nd boundary conditions (initial homogeneous drug distribution
nd perfect sink conditions), the respective set of partial differen-
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Fig. 11. Principle of a Monte Carlo-based approach to simulate polymer degradation
and diffusional drug release from PLGA-based microparticles. Schematic structure
of the system (one quarter of the two-dimensional grid shown in Fig. 10b): (a) at
t
G
r

t
t
i
t
e
P
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d
i
s

Fig. 12. Fit of a mechanistic realistic mathematical theory based on Monte Carlo
simulations and considering diffusional mass transport as well as limited local
d
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t
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r
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H
r
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t
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t
1985). Clearly, the classical Higuchi equation (Eq. (8)) as well as the
ime t = 0 (before exposure to the release medium) and (b) during drug release.
ray, dotted and white pixels represent non-degraded polymer, drug and pores,

espectively (reproduced with permission from Siepmann et al., 2002b).

ial equations is solved numerically, using finite differences (since
he diffusion coefficients are time- and position-dependent there
s no analytical solution). Importantly, good agreement between
heory and experiment was obtained when fitting this model to
xperimentally measured drug release from 5-fluouracil-loaded,
LGA-based microparticles in phosphate buffer pH 7.4 (Fig. 12).

ased on these calculations, system-specific parameters can be
etermined and the dominant physical and chemical phenomena

n each of the release periods be identified. For instance, it can be
hown that in this specific system the initial “burst release” is pri-

a
o
t
(

rug solubility to experimentally determined drug release from 5-fluouracil-loaded,
LGA-based microparticles in phosphate buffer pH 7.4: experimental results (sym-
ols) and fitted theory (curve) (reproduced with permission from Siepmann et al.,
002b).

arily controlled by pure drug diffusion. Furthermore, the model
llows for quantitative predictions of the effects of formulation and
rocessing parameters, including the initial microparticle size and
rug loading.

. Empirical and semi-empirical mathematical models

As discussed above, empirical/semi-empirical models should
enerally not be used if the underlying drug release mechanisms
re to be elucidated and/or quantitative predictions of the effects
f formulation and/or processing parameters on the resulting drug
elease profiles are to be made. However, such a descriptive math-
matical analysis can be useful for a comparison of different
rug release profiles (e.g., for experimental design studies). Semi-
mpirical models might be realistic in certain, extreme cases and
ive an indication for the underlying drug release mechanism under
ery specific conditions. Nevertheless, caution has to be paid and
he potential violation of model assumptions must carefully be ver-
fied.

.1. Peppas equation

A very frequently used and easy-to-apply model to describe drug
elease is the so-called Peppas equation, or power law (Peppas,
985):

Mt

M∞
= ktn (26)

ere, Mt and M∞ are the absolute cumulative amount of drug
eleased at time t and infinite time, respectively; k is a constant
ncorporating structural and geometric characteristics of the sys-
em, and n is the release exponent, which might be indicative
f the mechanism of drug release. Nicholas Peppas was the first
o introduce this equation in the field of drug delivery (Peppas,
bove described short time approximation of the exact solution
f Fick’s second law for thin films with initial drug concentra-
ions, which are below drug solubility (monolithic solutions, Eq.
4)) represent the special case of the Peppas equation where the
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Table 1
Release exponent n of the Peppas equation and drug release mechanism from poly-
meric controlled delivery systems of different geometry.

Thin film Exponent, n Drug release mechanism
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Fig. 13. Effects of the ratio “initial length:initial diameter” (L0/D0) of a cylinder on the
resulting relative dissolution rate (or relative drug release rate) versus time accord-
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.5 0.45 0.43 Fickian diffusion

.5 < n < 1.0 0.45 < n < 0.89 0.43 < n < 0.85 Anomalous transport
.0 0.89 0.85 Polymer swelling

elease exponent is equal to 0.5. Thus, a release exponent of 0.5
an serve as an indication for diffusion controlled drug release, but
nly if all assumptions these particular solutions are based on are
ulfilled, in example film geometry with negligible edge effects,
ime- and position-independent diffusion coefficients in a non-
wellable and insoluble matrix former. For other device geometries
nd pure drug diffusion control, different release exponent val-
es have been derived (Table 1) (Ritger and Peppas, 1987a,b). In
ontrast, if polymer swelling is the solely release rate controlling
echanism and in the case of a delivery system with film geom-

try, zero order drug release kinetics are observed (as discussed
bove), corresponding to a release exponent of n = 1. But again, none
f the model assumptions for this particular case must be violated.
or other geometries than that of thin films with negligible edge
ffects, different n-values can serve as indicators for purely swelling
ontrolled drug delivery (Table 1). Release exponents that are in-
etween these extreme values for the respective device geometry

ndicate so-called “anomalous” transport, thus, an overlapping of
ifferent types of phenomena, potentially including drug diffusion
nd polymer swelling.

.2. Hopfenberg model

Hopfenberg (1976) proposed an interesting semi-empirical
odel allowing for a quantitative description of drug release from

egradable drug delivery systems exhibiting a release rate which
s proportional to the (time-dependent) surface area of the device.
ll mass transfer processes that are involved in the control of drug
elease are assumed to add up to a single zero order process (char-
cterized by a rate constant, k0), which is confined to the surface
rea of the system. This zero order process might correspond to one
ingle physical or chemical phenomenon, but it might also result
rom the superposition of several processes, such as dissolution,
welling and/or polymer chain cleavage. The Hopfenberg model
an for instance be applied to surface eroding polymer matrices
or which a zero order surface detachment of the drug is the rate
imiting release step. The general equation is as follows:

Mt

M∞
= 1 −

(
1 − k0t

c0a

)n

(27)

ere, Mt and M∞ are the cumulative absolute amounts of drug
eleased at time t and at infinite time, respectively; c0 denotes the
niform initial drug concentration within the system; and a is the
adius of a cylinder or sphere or the half-thickness of a slab; n is
“shape factor” representing spherical (n = 3), cylindrical (n = 2) or

lab geometry (n = 1). The model ignores edge and end effects.

.3. Cooney model

A more detailed analysis for spheres and cylinders undergoing

urface erosion was presented by Cooney (1972). Also his model is
ased on the assumption that there is one single zero order kinet-

cs process, which is confined to the surface of the drug delivery
ystem. As in the Hopfenberg model the release rate is assumed to
e proportional to the surface area of the device, which is time-

o
t
o
d
l

ng to the semi-empirical Cooney model. The numbers given at the curves indicate
he respective L0/D0 ratios. The curve for L0/D0 approaching zero (film geometry) is
horizontal line at relative dissolution rate = 1.0 (reprinted with permission from
ooney, 1972).

ependent. For a cylinder with the initial length L0 and initial
iameter D0, the following equation was derived quantifying the
rug release rate f as a function of time t:

= (D0 − 2Kt)2 + 2(D0 − 2Kt)(L0 − 2Kt)

D2
0 + 2D0L0

(28)

here K is a constant. Fig. 13 illustrates the effects of the ratio “ini-
ial length:initial diameter” (L0/D0) of a cylinder on the resulting
elative drug release rate versus time (=relative dissolution rate in
his example). When L0/D0 approaches zero (film geometry) the
urves transform into a horizontal line with a constant relative drug
elease rate of 1. It is interesting to note that for disc-like cylinders
ratios of L0/D0 < 1, curves numbered 0.1, 0.2 and 0.5), the relative
rug release rate remains finite up to complete drug release. In con-
rast, for rod-like cylinders (L0/D0 > 1, curves numbered 1, 2, 5 and
nfinity), the relative drug release rate approaches zero at late time
oints.

.4. Artificial neural networks

Also artificial neural networks (ANNs) can be used to model drug
elivery (Takahara et al., 1997; Chen et al., 1999; Takayama et al.,
999; Wu et al., 2000). The basic principle of this type of mathemat-
cal analysis is illustrated in Fig. 14. An ANN consists of one input
ayer, one output layer and one or more hidden intermediate layers.
ach layer is composed of several units, corresponding to “neurons”.
he input layer encompasses n input values of causal factors, e.g.
he drug loading, compression force or excipient content. The out-
ut layer can for instance consist of constants describing the drug
elease profile. As illustrated, the units of neighboring layers are
nterconnected, the links corresponding to “synapses”. The strength

f these links can vary, they are also called “weights”. Upon defini-
ion of the model structure a set of experimental results (consisting
f input and output values) is used to “train” the network, that is to
efine the optimal equations and weights allowing for the calcu-

ation of the output values based on the input values. Thus, ANNs
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Fig. 14. Basic principle of mathematical modeling using artificial neural networks
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ANNs): Xi represents the input value of causal factors, n is the number of causal
actors, Yi denotes the output value of responses and m the number of responses.
etween the input and output layer, one or more hidden layers are located (reprinted
ith permission from Takahara et al., 1997).

an be considered as nonlinear regression analysis tools. Once the
ystem is “trained”, it can be used to make quantitative predictions
or the output values based on new input values. This type of anal-
sis was for instance used by Takahara et al. (1997) to simulate the
ffects of the amounts of microcrystalline cellulose and hydrox-
propyl methylcellulose as well as of the compression pressure
sed to prepare trapidil-loaded matrix tablets on the resulting drug
elease kinetics. Ibric et al. (2002) applied ANNs to study acetylsal-
cylic acid release from Eudragit RS-based matrix tablets, whereas
heophylline release from coated pellets was analyzed by Ghaffari
t al. (2006) using this type of mathematical modeling approach. A
urther interesting application of neural networks in drug delivery
as presented by Shao et al. (2006, 2007), predicting drug release

rom and tablet tensile strength of immediate release formulations.

. Conclusions and future outlook

The mathematical modeling of drug delivery has a significant
otential to facilitate product development in the future and to
elp understanding complex pharmaceutical dosage forms. Due
o the advances in information technology the accuracy of these

odels steadily increases and they become more and more easy
o apply. Similar to other scientific disciplines mathematical mod-
ling of drug delivery can be expected to become an integral part
f product development. However, it is unlikely that there will be
ne general theory that is applicable to any type of drug delivery
ystem. It is much more likely that there will be a broad spectrum
f different mathematical models, applicable to specific types of
evices differing in geometry, drug and excipient type. Decision
rees will allow for the identification of the appropriate model for a
pecific type of delivery system and type of task (e.g., prediction of
he effects of formulation parameters or improved understanding
f the underlying drug release mechanisms).

A particularly fruitful, but also very challenging aspect will be
o combine these mathematical theories with models quantifying
rug transport in the living organism, including drug distribution in
he various organs and even within the different cell compartments.
deally, theoretical calculations should allow for a quantitative pre-
iction of the effects of formulation and processing parameters not
nly on the resulting drug release kinetics, but on the resulting

rug concentration time profiles at the site of action in the human
ody and on the pharmacodynamic effects in the patients under the
isease conditions. This type of mathematical modeling is much
ore complex, but in the very long run it could help to allow for

ustomized drug delivery to the patient.
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bric, S., Jovanović, M., Djurić, Z., Parojčić, J., Solomun, L., 2002. The application of gen-
eralized regression neural network in the modeling and optimization of aspirin
extended release tablets with Eudragit® RS PO as matrix substance. J. Control.
Release 82, 213–222.

u, R.T.C., Nixon, P.R., Patel, M.V., 1995a. Drug release from hydrophilic matrices. 1.
New scaling laws for predicting polymer and drug release based on the poly-
mer disentanglement concentration and the diffusion layer. J. Pharm. Sci. 84,
1455–1463.

u, R.T.C., Nixon, P.R., Patel, M.V., Tong, D.M., 1995b. Drug release from hydrophilic
matrices. 2. A mathematical model based on the polymer disentanglement con-
centration and the diffusion layer. J. Pharm. Sci. 84, 1464–1477.

u, R.T.C., Nixon, P.R., Patel, M.V., 1997. Diffusion coefficients of polymer chains in
the diffusion layer adjacent to a swollen hydrophilic matrix. J. Pharm. Sci. 86,
1293–1298.

orsmeyer, R.W., Lustig, S.R., Peppas, N.A., 1986a. Solute and penetrant diffusion in
swellable polymers. I. Mathematical modeling. J. Polym. Sci. Polym. Phys. Ed. 24,
395–408.

orsmeyer, R.W., von Meerwall, E., Peppas, N.A., 1986b. Solute and penetrant diffu-
sion in swellable polymers. II. Verification of theoretical models. J. Polym. Sci.
Polym. Phys. 24, 409–434.

rewson, C.E., Saltzman, W.M., 1996. Transport and elimination of recombi-
nant human NGF during long-term delivery to the brain. Brain Res. 727,
169–181.

anger, R., Peppas, N.A., 1983. Chemical and physical structure of polymers as carriers
for controlled release of bioactive agents: a review. Rev. Macromol. Chem. Phys.
C23, 61–126.

ao, L.L., Venkatraman, S.S., Peppas, N.A., in press. Modeling of drug release from
biodegradable polymer blends. Eur. J. Pharm. Biopharm.

apidus, H., Lordi, N.G., 1966. Some factors affecting the release of a water-soluble
drug from a compressed hydrophilic matrix. J. Pharm. Sci. 55, 840–843.

apidus, H., Lordi, N.G., 1968. Drug release from compressed hydrophilic matrices.

J. Pharm. Sci. 57, 1292–1301.

ee, P.I., 1980. Diffusional release of a solute from a polymeric matrix—approximate
analytical solutions. J. Membr. Sci. 7, 255–275.

emaire, V., Bélair, J., Hildgen, P., 2003. Structural modeling of drug release from
biodegradable porous matrices based on a combined diffusion/erosion process.
Int. J. Pharm. 258, 95–107.

T

V

l of Pharmaceutics 364 (2008) 328–343

in, C.C., Metters, A.T., 2006. Hydrogels in controlled release formulations: network
design and mathematical modeling. Adv. Drug Deliv. Rev. 58, 1379–1408.

arucci, M., Ragnarsson, G., Nyman, U., Axelsson, A., 2008. Mechanistic model for
drug release during the lag phase from pellets coated with a semi-permeable
membrane. J. Control. Release 127, 31–40.

ollo, A.R., Corrigan, O.I., 2003. Effect of poly-hydroxy aliphatic ester polymer
type on amoxycillin release from cylindrical compacts. Int. J. Pharm. 268,
71–79.

arasimhan, B., Peppas, N.A., 1996a. Disentanglement and reptation during disso-
lution of rubbery polymers. J. Polym. Sci. Polym. Phys. 34, 947–961.

arasimhan, B., Peppas, N.A., 1996b. On the importance of chain reptation in models
of dissolution of glassy polymers. Macromolecules 29, 3283–3291.

arasimhan, B., Peppas, N.A., 1997. Molecular analysis of drug delivery systems
controlled by dissolution of the polymer carrier. J. Pharm. Sci. 86, 297–304.

arasimhan, B., 2001. Mathematical models describing polymer dissolution: conse-
quences for drug delivery. Adv. Drug Deliv. Rev. 48, 195–210.

icholson, C., 2001. Diffusion and related transport mechanisms in brain tissue. Rep.
Prog. Phys. 64, 815–884.

oyes, A.A., Whitney, W.R., 1897. Ueber die Aufloesungsgeschwindigkeit von festen
Stoffen in ihren eigenen Loesungen. Z. Physikal. Chem. 23, 689–692.

ark, G.S., 1986. Transport principles—solution, diffusion and permeation in poly-
mer membranes. In: Bungay, P.M., Lonsdale, H.K., de Pinho, M.N. (Eds.), Synthetic
Membranes: Science, Engineering and Applications. D. Reidel Publishing Com-
pany, Dordrecht, pp. 57–108.

eppas, N.A., 1985. Analysis of Fickian and non-Fickian drug release from polymers.
Pharm. Acta Helv. 60, 110–111.

eppas, N.A., Sahlin, J.J., 1989. A simple equation for the description of solute release.
III. Coupling of diffusion and relaxation. Int. J. Pharm. 57, 169–172.

aman, C., Berkland, C., Kim, K., Pack, D.W., 2005. Modeling small-molecule release
from PLG microspheres: effects of polymer degradation and nonuniform drug
distribution. J. Control. Release 103, 149–158.

itger, P.L., Peppas, N.A., 1987a. A simple equation for description of solute release. I.
Fickian and non-Fickian release from non-swellable devices in the form of slabs,
spheres, cylinders or discs. J. Control. Release 5, 23–36.

itger, P.L., Peppas, N.A., 1987b. A simple equation for description of solute release.
II. Fickian and anomalous release from swellable devices. J. Control. Release 5,
37–42.

altzman, W.M., Radomsky, M.L., 1991. Drugs released from polymers: diffusion and
elimination in brain tissue. Chem. Eng. Sci. 46, 2429–2444.

hao, Q., Rowe, R.C., York, P., 2006. Comparison of neurofuzzy logic and neural
networks in modelling experimental data of an immediate release tablet for-
mulation. Eur. J. Pharm. Sci. 28, 394–404.

hao, Q., Rowe, R.C., York, P., 2007. Investigation of an artificial intelligence
technology—model trees: novel applications for an immediate release tablet
formulation database. Eur. J. Pharm. Sci. 31, 137–144.

iegel, R.A., 2000. Theoretical analysis of inward hemispheric release above and
below drug solubility. J. Control. Release 69, 109–126.

iepmann, J., Ainaoui, A., Vergnaud, J.M., Bodmeier, R., 1998. Calculation of the
dimensions of drug-polymer devices based on diffusion parameters. J. Pharm.
Sci. 87, 827–832.

iepmann, J., Peppas, N.A., 2000. Hydrophilic matrices for controlled drug delivery:
an improved mathematical model to predict the resulting drug release kinetics
(the “sequential layer” model). Pharm. Res. 17, 1290–1298.

iepmann, J., Peppas, N.A., 2001. Modeling of drug release from delivery systems
based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 48,
139–157.

iepmann, J., Goepferich, A., 2001. Mathematical modeling of bioerodible, polymeric
drug delivery systems. Adv. Drug Deliv. Rev. 48, 229–247.

iepmann, J., Streubel, A., Peppas, N.A., 2002a. Understanding and predicting drug
delivery from hydrophilic matrix tablets using the “sequential layer” model.
Pharm. Res. 19, 306–314.

iepmann, J., Faisant, N., Benoit, J.P., 2002b. A new mathematical model quantifying
drug release from bioerodible microparticles using Monte Carlo simulations.
Pharm. Res. 19, 1887–1895.

iepmann, J., Faisant, N., Akiki, J., Richard, J., Benoit, J.P., 2004. Effect of the size of
biodegradable microparticles on drug release: experiment and theory. J. Control.
Release 96, 123–134.

iepmann, F., Le Brun, V., Siepmann, J., 2006a. Drugs acting as plasticizers in poly-
meric systems: a quantitative treatment. J. Control. Release 115, 298–306.

iepmann, J., Siepmann, F., Florence, A.T., 2006b. Local controlled drug delivery to the
brain: mathematical modeling of the underlying mass transport mechanisms.
Int. J. Pharm. 314, 101–119.

iepmann, F., Herrmann, S., Winter, G., Siepmann, J., 2008. A novel mathematical
model quantifying drug release from lipid implants. J. Control. Release 128,
233–240.

treubel, A., Siepmann, J., Peppas, N.A., Bodmeier, R., 2000. Bimodal drug release
achieved with multi-layer matrix tablets: transport mechanisms and device
design. J. Control. Release 69, 455–468.

akahara, J., Takayama, K., Nagai, T., 1997. Multi-objective simultaneous optimization

technique based on an artificial neural network in sustained release formula-
tions. J. Control. Release 49, 11–20.

akayama, K., Fujikawa, M., Nagai, T., 1999. Artificial neural network as a novel
method to optimize pharmaceutical formulations. Pharm. Res. 16, 1–6.

eng-Pedersen, P., 2001. Noncompartmentally-based pharmacokinetic modeling.
Adv. Drug Deliv. Rev. 48, 265–300.



Journa

V

W

W

Z

Z

Z

J. Siepmann, F. Siepmann / International

ergnaud, J.M., 1993. Controlled Drug Release of Oral Dosage Forms. Ellis Horwood,
New York.

ang, T.T., Kwei, T.K., Frisch, H.L., 1968. Diffusion in glassy polymers, III. J. Polym.
Sci. 7, 2019–2028.
u, T., Pan, W., Chen, J., Zhang, R., 2000. Formulation optimization, technique based
on artificial neural network in salbutamol sulfate osmotic pump tablets. Drug
Dev. Ind. Pharm. 26, 211–215.

hou, Y., Wu, X.Y., 2003. Modeling and analysis of dispersed-drug release into a finite
medium from sphere ensembles with a boundary layer. J. Control. Release 90,
23–36.

Z

Z

l of Pharmaceutics 364 (2008) 328–343 343

hou, Y., Chu, J.S., Zhou, T., Wu, X.Y., 2005. Modeling of dispersed-drug release from
two-dimensional matrix tablets. Biomaterials 26, 945–952.

ygourakis, K., 1989. Discrete simulations and bioerodible controlled release sys-
tems. Polym. Prep. ACS 30, 456–457.
ygourakis, K., 1990. Development and temporal evolution of erosion fronts
in bioerodible controlled release devices. Chem. Eng. Sci. 45, 2359–
2366.

ygourakis, K., Markenscoff, P.A., 1996. Computer-aided design of bioerodible
devices with optimal release characteristics: a cellular automata approach.
Biomaterials 17, 125–135.


	Mathematical modeling of drug delivery
	Introduction
	Drug release mechanisms
	Mechanistic realistic theories
	Theories based on Fick's law of diffusion
	Theories considering polymer swelling
	Theories considering polymer swelling and polymer and drug dissolution
	Theories considering polymer erosion/degradation

	Empirical and semi-empirical mathematical models
	Peppas equation
	Hopfenberg model
	Cooney model
	Artificial neural networks

	Conclusions and future outlook
	References


